Flip Graphs of Bounded-Degree Triangulations

نویسندگان

  • Oswin Aichholzer
  • Thomas Hackl
  • David Orden
  • Pedro Ramos
  • Günter Rote
  • André Schulz
  • Bettina Speckmann
چکیده

We study flip graphs of triangulations whose maximum vertex degree is bounded by a constant k. In particular, we consider triangulations of sets of n points in convex position in the plane and prove that their flip graph is connected if and only if k > 6; the diameter of the flip graph is O(n). We also show that, for general point sets, flip graphs of pointed pseudo-triangulations can be disconnected for k ≤ 9, and flip graphs of triangulations can be disconnected for any k. Additionally, we consider a relaxed version of the original problem. We allow the violation of the degree bound k by a small constant. Any two triangulations with maximum degree at most k of a convex point set are connected in the flip graph by a path of length O(n logn), where every intermediate triangulation has maximum degree at most k + 4.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flip Graphs of Degree-Bounded (Pseudo-)Triangulations⋆

We study flip graphs of (pseudo-)triangulations whose maximum vertex degree is bounded by a constant k. In particular, we consider (pseudo-)triangulations of sets of n points in convex position in the plane and prove that their flip graph is connected if and only if k > 6; the diameter of the flip graph is O(n). We also show that for general point sets flip graphs of minimum pseudo-triangulatio...

متن کامل

3-Colorability of Pseudo-Triangulations

Deciding 3-colorability for general plane graphs is known to be an NP-complete problem. However, for certain classes of plane graphs, like triangulations, polynomial time algorithms exist. We consider the family of pseudo-triangulations (a generalization of triangulations) and prove NP-completeness for this class. The complexity status does not change if the maximum face-degree is bounded to fo...

متن کامل

Modular flip-graphs of one-holed surfaces

We study flip-graphs of triangulations on topological surfaces where distance is measured by counting the number of necessary flip operations between two triangulations. We focus on surfaces of positive genus g with a single boundary curve and n marked points on this curve; we consider triangulations up to homeomorphism with the marked points as their vertices. Our main results are upper and lo...

متن کامل

k-forested choosability of graphs with bounded maximum average degree

A proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. A graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $G$ such that each vertex receives a color from its own list. In this paper, we prov...

متن کامل

Computing Motorcycle Graphs Based on Kinetic Triangulations

We present an efficient algorithm for computing generalized motorcycle graphs, in which motorcycles are allowed to emerge after time zero. Our algorithm applies kinetic triangulations inside of the convex hull of the input, while a plane sweep is used outside of it. Its worst-case complexity is O((n + f) log n), where f ∈ O(n) denotes the number of flip events that occur in the kinetic triangul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2009